学术海报

12月23日 谭海军副教授学术报告(数学与统计学院)

发布者:吴福燕发布时间:2025-12-16浏览次数:10

报告人:谭海军 副教授

报告题目:The polynomial modules over the symplectic Lie algebras

报告时间:20251223日(周二)14:30-15:30

报告地点:云龙校区6号楼304报告厅

主办单位:数学与统计学院、数学研究院、科学技术研究院

报告人简介:

东北师范大学数学与统计学院副教授,主要研究领域为李代数和结合代数的表示理论,主持中国博士后基金,吉林省青年基金等项目。在Algebr. Represent. Theory, J. Algebra等著名SCI杂志上发表学术论文多篇。

报告摘要:

If a polynomial algebra $\C[x_1,\cdots, x_n]$ is equipped with a module structure over a Lie algebra $\mathfrak{a}$, then we call it a polynomial module over $\mathfrak{a}$. In this talk, I will introduce some new  polynomial module structures over the symplectic Lie algebra $\sp_{2l}(\C)$.

Let $\p$ be a maximal parabolic subalgebra of $\sp_{2l}(\C)$ with a nonzero abelian nilradical $\n$. There exist the $\sp_{2l}(\C)$-module structures on the polynomial algebra $\UU(\n)$ as a free $\UU(\n)$-module of rank one. Firstly, the corresponding $\sp_{2l}(\C)$-module structure is determined by two parameters $C\in\C$ and $\Phi\in\UU(\n)$, and so is denoted by $\tau(C,\Phi)$. Secondly, the parameter $C$ determines the simplicity of $\tau(C,\Phi)$. More precisely, $\tau(C,\Phi)$ is simple if and only if $C\notin\frac{l+1}{2}-\frac{1}{2}\Z_+$. And the parameter $\Phi$ determines  whether $\tau(C,\Phi)$ is a weight module, that is,  $\tau(C,\Phi)$ is a weight module if and only if $\Phi\in\C$. Thirdly, if $C\in\frac{l+1}{2}-\frac{1}{2}\Z_+$, then  $\tau(C,\Phi)$ is both Noetherian and Artinian, and whether the composition factor is a weight  module depends on whether a system of equations relative to the parameter $\Phi$  has solutions. This is a joint work with Chen Yan.