报告人:刘建州 教授
报告题目:Accelerated Algorithms for Solving the Unified Algebraic Lyapunov Matrix Equation and Its Application in Stability of Perturbed Systems
报告时间:2025年12月20日(周六)下午3:00
报告地点:云龙校区6号楼304报告厅
主办单位:数学与统计学院、数学研究院、科学技术研究院
报告人简介:
刘建州,湘潭大学数学与计算科学学院二级教授、博士生导师。2016.1-2020.1任中国数学会常务理事,湖南省运筹学会副理事长,2005.1-2020.11任湖南省数学会常务理事、秘书长,现任湖南省运筹学会监事长,湖南省数学学会常务理事、监事。长期从事数值代数、线性代数及其应用,线性控制等方面的研究,主持国家自然科学基金面上项目4项,作为主要成员参加国家重点研发项目2项,主持部、省级自然科学基金10余项,已培养毕业博士、硕士研究生90余人,在国内外重要学术期刊《SIMA J. Matrix Anal. Appl.》、《IEEE Transactions on Fuzzy Systems》、《IEEE Transactions on Automatic Control》、《Automatica》《Linear Algebra Appl.》、《Science China Infomation sciences》、《数学学报》、《数学年刊》等发表术论文200余篇,其中SCI期刊100余篇。先后获湖南省自然科学奖和湖南省高等教育教学成果二、三等奖多项,主编出版《实用数学建模教程》评为湖南省高等学校优秀教材。
报告摘要:
This paper establishes several equivalent conditions for a unique positive definite solution of the unified algebraic Lyapunov matrix equation(UALE).
Then, two iterative algorithms for the UALE driven by error precision are pro-posed, which can be accelerated by optimizing the calculation of series terms. The algorithm's convergence, computational complexity, and optimal parameter selection are discussed, supported by a series of numerical experiments that illustrate the effectiveness and superiority of our results.
Finally, by constructing a positive semi-definite matrix and employing matrix-singular inequality, a new robust bound for the unified perturbed system is derived, generalizing some of the existing results. Some numerical experiments demonstrate its practicality and advantage.

