报告人:高云石 博士
报告题目:Large deviations and central limit theorem for weakly interacting diffusions in Erdős-Rényi graph
报告时间:2025年11月8日(周六)上午9:00
报告地点:云龙校区6号楼304会议室
主办单位:数学与统计学院、数学研究院、科学技术研究院
报告人简介:
高云石,安徽师范大学讲师,研究方向为随机过程及其应用,目前的研究主要集中在弱交互粒子系统领域,论文发表在SPA,JTP,SPL等概率论期刊,主持国家自然科学基金青年项目1项。
报告摘要:
In this talk, we study a particle systems (or interacting diffusions) on an Erdős-Rényi graph with the parameter p_N in (0,1] . Our aim is to establish the large deviations and central limit theorem for the empirical measure process of particle systems under the condition Np_N^4→∞and Np_N^{3+ε}→∞ as N→∞, respectively, where N is the number of particles. Use exponential equivalence and multilinear extensions of Grothendieck inequality to prove the large deviations. For central limit theorem, its proof mainly relies on the estimation of the operator of diffusion processes in the Sobolev space.

