学术海报

11月8日 张树雄博士学术报告(数学与统计学院)

发布者:张永伟发布时间:2025-11-06浏览次数:11

报告人:张树雄 博士

报告题目:On the empty balls of branching random walks

报告时间:2025118日(周六)上午10:45

报告地点:云龙校区6号楼304会议室

主办单位:数学与统计学院、数学研究院、科学技术研究院

报告人简介:

张树雄,安徽师范大学讲师,2021年博士毕业于北京师范大学,2021-2023于南方科技大学开展博士后研究,研究方向为测度值分支过程及相关领域,研究成果发表在Bernoulli,ECP,JTP,JAP 等期刊,现主持国家自然科学基金青年项目1项,参与重点研发计划项目与面上项目各1项。

报告摘要:

Let R_n be the radius of the largest empty ball centered at the origin of a branching random walk started from a Poisson random measure at time n. In 2002, Revesz proved that for a 1-dimensional critical branching Wiener process, R_n/n converges in law. For d=2 and d>2, he conjectured that R_n/\sqrt n and R_n will converge in law, respectively. Later, Hu confirmed the case of d>2 in 2005. In this talk, we intend to prove the case of d=2 in a general setting. Moreover, we shall also deal with some new cases eg. the offspring law is subcritical or the offspring law has infinite variance, etc. Part of the work comes from the cooperation with Prof. Jie Xiong.