报告人:熊革 教授
报告题目:The optimal quadratic estimate for the cone-volume measure of antipodal points and its applications.
报告时间:2025年10月25日(周六)8:30-9:20
报告地点:云龙校区6号楼304会议室
主办单位:数学与统计学院、数学研究院、科学技术研究院
报告人简介:
熊革,同济大学长聘教授。主要研究凸几何、积分几何。在凸体几何领域解决Lutwak-Yang-Zhang猜想空间维数n=2, 3 的情形,建立Orlicz-John椭球理论,完全解决了R^3中体积分解泛函的极值问题。相关成果发表于 Advances in Mathematics、Journal of Differential Geometry、Calculus of Variations and PDEs、Communications in Analysis and Geometry等期刊。
报告摘要:
The optimal quadratic estimate for the cone-volume measure of antipodal points of convex bodies in R^n is obtained. As effective applications of this estimate, we establish the strong Minkowski and Brunn-Minkowski inequalities in R^n. This talk is based on the joint work with Yu-De LIU and Kai-Wen Yang.